Numerische Integration über zweidimensionalen Gebieten

نویسنده

  • Christian Göge
چکیده

This thesis discusses strategies for numerically solving a two dimensional integral. The difficulties here are due to numerous integrands and regions in R2. The transformation to units as the 2-simplex and the cube can simplify many integrands. An approach to arbitrary regions is to decompose them into easy ones as triangles and rectangles. For these regions formulas that approximate the two dimensional integral are developed. Newton-Cotes-Formulas use, like in one dimension, an interpolation of the integrand on fixed, equidistant nodes. Gauss-Formulas reach a higher precision than the Newton-Cotes-Formulas with free nodes. To find formulas with a minimum number of nodes, one analyses orthogonal polynomials and their common zeros. Although the zeros of orthogonal polynomials are used as nodes for formulas of maximum degree in one dimension, they can only be taken as nodes for two dimensional formulas under certain restrictions. Moreover the theory of orthogonal polynomials is much more complicated in more than one dimension. In the end, the derived formulas are demonstrated on some examples. An adaptive algorithm which divides a triangular region until it reaches a presigned tolerance is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast numerical algorithm for the integration of rational functions

A new iterative method for high-precision numerical integration of rational functions on the real line is presented. The algorithm transforms the rational integrand into a new rational function preserving the integral on the line. The coefficients of the new function are explicit polynomials in the original ones. These transformations depend on the degree of the input and the desired order of t...

متن کامل

A new class of symplectic integration schemes based on generating functions

We present a new family of one-step symplectic integration schemes for Hamiltonian systems of the general form ẏ = J∇H(y) . Such a class of methods contains as particular cases the methods of Miesbach and Pesch [13], and also the family of symplectic Runge-Kutta methods. As in the case of the methods introduced in [13], the new integration methods are constructed by defining a generating functi...

متن کامل

Informatik für die Welt von Morgen

Im Deutschen Zentrum für Luftund Raumfahrt wird auf den Gebieten Luftfahrt, Raumfahrt, Energie, Verkehr und Sicherheit geforscht und entwickelt. Das umfasst die Erforschung von Erde und Sonnensystem, Forschung für den Erhalt der Umwelt und umweltverträgliche Technologien, zur Steigerung der Mobilität sowie für Kommunikation und Sicherheit. Damit arbeitet das DLR auf vielen Gebieten, die unsere ...

متن کامل

Numerical integration over a disc. A new Gaussian quadrature formula

The ordinary type of information data for approximation of functions f or functionals of them in the univariate case consists of function values {f(x1), . . . , f(xm)}. The classical Lagrange interpolation formula and the Gauss quadrature formula are famous examples. The simplicity of the approximation rules, their universality, the elegancy of the proofs and the beauty of these classical resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013